
THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67
www.theoryofcomputing.org

Deterministic History-Independent
Strategies for Storing Information

on Write-Once Memories
Tal Moran∗ Moni Naor∗† Gil Segev∗

Received: July 1, 2008; revised: May 14, 2009; published: May 23, 2009.

Abstract: Motivated by the challenging task of designing “secure” vote storage mecha-
nisms, we study information storage mechanisms that operate in extremely hostile environ-
ments. In such environments, the majority of existing techniques for information storage
and for security are susceptible to powerful adversarial attacks. We propose a mechanism
for storing a set of at most K elements from a large universe of size N on write-once mem-
ories in a manner that does not reveal the insertion order of the elements. We consider a
standard model for write-once memories, in which the memory is initialized to the all-zero
state, and the only operation allowed is flipping bits from 0 to 1. Whereas previously known
constructions were either inefficient (required Θ(K2) memory), randomized, or employed
cryptographic techniques which are unlikely to be available in hostile environments, we
eliminate each of these undesirable properties. The total amount of memory used by the
mechanism is linear in the number of stored elements and poly-logarithmic in the size of
the universe of elements.

A preliminary version of this work appeared in the Proc. of the 34th Internat. Colloquium on Automata, Languages and
Programming (ICALP 2007), pages 303–315.
∗Research supported in part by a grant from the Israel Science Foundation.
†Incumbent of the Judith Kleeman Professorial Chair.

ACM Classification: E.1, E.2, F.2.2

AMS Classification: 68P05, 68P30

Key words and phrases: history-independent, write-once memory, tamper-evident, vote storage mech-
anisms, information-theoretic security, conflict resolution, expander graphs

2009 Tal Moran, Moni Naor, and Gil Segev
Licensed under a Creative Commons Attribution License DOI: 10.4086/toc.2009.v005a002

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2009.v005a002

TAL MORAN, MONI NAOR, AND GIL SEGEV

We also demonstrate a connection between secure vote storage mechanisms and one of
the classical distributed computing problems: conflict resolution in multiple-access chan-
nels. By establishing a tight connection with the basic building block of our mechanism,
we construct the first deterministic and non-adaptive conflict resolution algorithm whose
running time is optimal up to poly-logarithmic factors.

1 Introduction

In this paper we deal with the design of information storage mechanisms that operate in extremely
hostile environments. In such environments, the majority of existing techniques for information storage
and for security are susceptible to powerful adversarial attacks. Our motivation emerges from the task
of designing vote storage mechanisms, recently studied by Molnar, Kohno, Sastry, and Wagner [20].
The setting considered by Molnar et al. is that of an electronic voting machine in a polling station. In
a typical election, the machine is set up by local election officials. Voters are then allowed to cast their
ballots. Finally, the “polls are closed” by the election officials (after which no additional ballots may be
cast), and the results transmitted to a voting center. The machines themselves may also be used to audit
or verify the results.

This setting is an acute example of a hostile environment for voting machines: an adversary attempt-
ing to corrupt the election results may also be a legitimate voter, an election official, or even one of the
voting machine developers. A typical threat is a corrupt poll worker who has complete access to the
vote storage mechanism at some point during or after the election process. The attacker may attempt to
change, add or delete votes, or merely to learn how others voted (in order to buy votes or coerce voters).
Without a “secure” vote storage mechanism, such an adversary may be able to undetectably tamper with
the voting records or compromise voter privacy.

We consider the abstract problem of storing a set of at most K elements taken from a large universe
of size N, while minimizing the total amount of allocated memory. In the vote storage context, think of
“elements” as ballots, K as the number of voters and of N as the number of possible ballot states (e. g.,
if there are 10 two-candidate races, there are N = 210 possible ballot states; alternatively, if there is one
race where write-in candidates are allowed, N would be the number of possible candidate names). Our
mechanism supports insert operations, membership queries, and enumeration of all stored elements.1

While previously known constructions were either inefficient, randomized, or employed cryptographic
techniques that require secure key storage, we make a concentrated effort to eliminate these undesirable
properties. We design a storage mechanism which is deterministic, history-independent, and tamper-
evident.

Deterministic strategies. Randomization is an important ingredient in the design of efficient systems.
However, for systems that operate in hostile environments, randomization can assist the adversary in
attacking the system. First, as sources of random bits are typically obtained from the environment,
it is quite possible that the adversary can corrupt these sources. In such cases, we usually have no

1We note that for vote storage mechanisms it is sufficient to support only insert operations and enumeration of all stored
elements.

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 44

http://dx.doi.org/10.4086/toc

STORING INFORMATION ON WRITE-ONCE MEMORIES

guarantees on the expected behavior of the system. Second, even when truly random bits are available,
these bits may be revealed to the adversary in advance, and serve as a crucial tool in the attack. Third, a
randomized storage strategy may enable a covert channel: As multiple valid representations for the same
abstract state exist, a maliciously designed storage mechanism can secretly embed information into the
stored data by choosing one of these representations. Applications such as voting protocols may run
in completely untrusted environments. In such cases, deterministic strategies have invaluable security
benefits.

History-independence. Many systems give away much more information than they were intended
to. When designing a data structure whose memory representation may be revealed, we would like to
ensure that an adversary will not be able to infer information that is not available through the system’s
legitimate interface. Computer science is rich with tales of cases where this was not done, such as files
containing information whose creators assumed had been erased, only to be revealed later in embar-
rassing circumstances (e. g., see [3, 10]). Informally, we consider a period of activity after which the
memory representation of the data is revealed to the adversary. The data structure is history-independent
if the adversary will not be able to deduce any more about the sequence of operations that led to the
current content than the content itself yields (concrete definitions will be given in Section 3.1).

Tamper-evident write-once storage. A data structure is tamper-evident if any unauthorized modifi-
cation of its content can be detected. Tamper-evidence is usually provided by a mixture of physical
assumptions (such as secure processors) and cryptographic tools (such as signature schemes). Unfortu-
nately, the majority of cryptographic tools require secure key storage, which is unlikely to be available
in a hostile environment. Our construction follows the approach of Molnar et al. [20], who exploited
the properties of write-once memories to provide tamper-evident storage. They introduced an encoding
scheme in which flipping some of the bits of any valid codeword from 0 to 1 will never lead to another
valid codeword. Consider, for example, the encoding E(x) = x ||wt(x̄)2, obtained by concatenating the
string x with the binary representation of the Hamming weight of its complement. This encoding has
the property that flipping any bit of x from 0 to 1 decreases wt(x̄)2, and requires flipping at least one
bit of wt(x̄)2 from 1 to 0 (which is physically impossible when using a write-once memory). In the
voting scenario, this prevents any modification to the stored ballots after the polls close, and prevents
poll workers from tampering with the content of the data structure while the storage device is in transit.
This approach does not require any cryptographic tools or computational assumptions, which makes it
very suitable for the setting of hostile environments. The additional memory allocation required by the
encoding is only logarithmic in the size of the stored data, and can be handled independently of the
storage strategy. For simplicity of presentation, we ignore the encoding procedure, and refer the reader’s
attention to the fact that our storage strategy is indeed write-once (i. e., the memory is initialized to the
all-zero state, and the only operation allowed is flipping bits from 0 to 1).

1.1 Our contributions

We construct an efficient, deterministic mechanism for storing a set of at most K elements on write-
once memories. The elements are given one at a time, and stored in a manner that does not reveal the

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 45

http://dx.doi.org/10.4086/toc

TAL MORAN, MONI NAOR, AND GIL SEGEV

insertion order. Our mechanism is immune to a large class of attacks that made previous constructions
unsuitable for extremely hostile environments. Previous constructions were either much less efficient
(required Θ(K2) memory), randomized, or employed cryptographic techniques that require secure key
storage (making them vulnerable to various side-channel and hardware attacks). Unless stated otherwise,
throughout the paper we refer to the amount of allocated memory as the number of allocated memory
words, each of length logN bits, and assume that writing and reading a memory word can be done in
constant time. Our main result is the following:

Theorem 1.1. There exists an explicit, deterministic, history-independent, and write-once mechanism
for storing a set of at most K elements from a universe of size N, such that:

1. The total amount of allocated memory is O(K ·polylog(N)).

2. The amortized insertion time and the worst-case look-up time are O(polylog(N)).

In addition, our construction yields a non-constructive proof for the existence of the following stor-
age mechanism:

Theorem 1.2. There exists a deterministic, history-independent, and write-once mechanism for storing
a set of at most K elements from a universe of size N, such that:

1. The total amount of allocated memory is O(K log(N/K)).

2. The amortized insertion time is O(log2 N · logK).

3. The worst-case look-up time is O(logN · logK).

In order to evaluate the security of our mechanism we focus on the main security goals of vote stor-
age mechanisms [20], and formalize a threat model. Such a model should specify both the computational
capabilities of the adversary (in this paper we consider computationally unbounded adversaries), and the
type of access that the adversary has to the mechanism. Our threat model is described in Section 3.2.
Informally, we consider two types of adversaries: post-election adversaries that gain access to the mech-
anism at the end of the election process, and lunch-time adversaries that gain access to the mechanism
at several points in time during the election process. For each type of adversaries we consider two levels
of access to the mechanism: read-only access, and read-write access.

We show that our mechanism provides the highest level of security against post-election adversaries
with read-write access, and against lunch-time adversaries with read-only access. Unfortunately, our
mechanism turns out to be insecure against lunch-time adversaries with read-write access. Specifically, it
does not guarantee tamper-evidence against such adversaries. We prove, however, that such a vulnerabil-
ity is not specific for our construction, but is inherent in any mechanism that uses significantly less than
K2 bits of storage. In fact, we provide a complete characterization of the class of deterministic, history-
independent and write-once mechanisms that do enjoy such a level of security. Informally, we show that
any such mechanism stores the elements according to a superimposed code [17]. The following theorem
then follows from known lower bounds and upper bounds on superimposed codes [11, 12, 25]:

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 46

http://dx.doi.org/10.4086/toc

STORING INFORMATION ON WRITE-ONCE MEMORIES

Theorem 1.3. Any deterministic, history-independent, and write-once mechanism for storing a set of at
most K elements from a universe of size N which is tamper-evident against a lunch-time adversary with
read-write access uses Ω

(
(K2/logK) · logN

)
bits of storage. Moreover, there exists such an explicit

mechanism that uses O(K2 log2 N) bits of storage.

Conflict resolution. In this paper we also address a seemingly unrelated problem: conflict resolution
in multiple-access channels. A fundamental problem of distributed computing is to resolve conflicts that
arise when several stations transmit simultaneously over a single channel. A conflict resolution algorithm
schedules retransmissions, such that each of the conflicting stations eventually transmits individually
to the channel. Such an algorithm is non-adaptive if the choice of the transmitting stations in each
step does not depend on information gathered from previous steps (with the exception that a station
which successfully transmits halts, and waits for the algorithm to terminate). The efficiency measure for
conflict resolution algorithms is the total number of steps it takes to resolve conflicts in the worst case
(where the worst case refers to the maximum over all possible sets of conflicting stations).

We consider the standard model in which N stations are tapped into a single channel, and there are
at most K conflicting stations. In 1985, Komlós and Greenberg [18] provided a non-constructive proof
for the existence of a deterministic and non-adaptive algorithm that resolves conflicts in O(K log(N/K))
steps. However, no explicit algorithm with a similar performance guarantee was known.

By adapting our technique to the setting of conflict resolution, we devise the first efficient deter-
ministic and non-adaptive algorithm for this problem. The number of steps required by our algorithm
to resolve conflicts matches the non-explicit upper bound of Komlós and Greenberg [18] up to poly-
logarithmic factors. More specifically, we prove the following theorem:

Theorem 1.4. For every N and K there exists an explicit, deterministic, and non-adaptive algorithm
that resolves any K conflicts among N stations in O(K ·polylog(N)) steps.

Paper organization. The rest of the paper is organized as follows. In Section 2 we review related
work. Section 3 contains some essential definitions and a formal description of our main security goals
and threat model. In Section 4 we present our construction of the storage mechanism, which we then an-
alyze in Section 5. The analysis includes, in addition to an evaluation of the soundness, performance, and
security guarantees of our construction, a characterization of the class of mechanisms that are determin-
istic, history-independent, and write-once and provide tamper-evidence against a lunch-time adversary
with read-write access. In Section 6 we provide constructions of the bipartite graphs that serve as the
main building block of our storage mechanism. Finally, in Section 7 we show that our technique can be
adapted to devise a deterministic and non-adaptive conflict resolution algorithm.

2 Related work

The problem of constructing history-independent data structures was first formally considered by Mic-
ciancio [19], who devised a variant of 2–3 trees that satisfies a property of this nature. Micciancio
considered a rather weak notion of history-independence, which required only that the shape of the trees

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 47

http://dx.doi.org/10.4086/toc

TAL MORAN, MONI NAOR, AND GIL SEGEV

does not leak information. We follow Naor and Teague [22] and consider a stronger notion—data struc-
tures whose memory representation does not leak information (see Section 3.1 for a formal definition
and for related work that considered this definition and its variants). Naor and Teague focused on dictio-
naries, and constructed very efficient hash tables in which the cost of each operation is constant. Some of
their results were recently improved by Blelloch and Golovin [5] and by Naor et al. [21] who managed
to support delete operations as well while still guaranteeing the strongest form of history independence.

In the context of write-once memories, Rivest and Shamir [24] initiated the study of codes for write-
once memory, by demonstrating that such memories can be “rewritten” to a surprising degree. Irani,
Naor, and Rubinfeld [16] explored the time and space complexity of computation using write-once
memories, i. e., whether “a pen is much worse than a pencil.” Specifically, they proved that a Turing
machine with write-once polynomial space decides exactly the class of languages P.

History-independence on write-once memories. Molnar et al. [20] studied the task of designing a
vote storage mechanism, and suggested constructions of history-independent storage mechanisms on
write-once memories. Among their suggestions is a deterministic mechanism based on an observation
of Naor and Teague [22], stating that one possible way of ensuring that the memory representation is
determined by the content of a data structure is to store the elements in lexicographical order. This
way, any set of elements has a single canonical representation, regardless of the insertion order of its
elements. When dealing with write-once media, however, we cannot sort in-place when a new element
is inserted. Instead, on every insertion, we compute the sorted list that includes the new element, copy
the contents of this list to the next available memory position, and erase the previous list. We refer to
this solution as a copy-over list, as suggested by Molnar et al. [20]. The main disadvantage of copy-
over lists is that any insertion requires copying the entire list. Therefore, storing K elements requires
Θ(K2) memory. We note that when dealing with a small universe of elements (for example, an election
with only two candidates), a better solution is to pre-allocate memory to store a bounded unary counter
for each element. However, this may not be suitable for elections in cases where write-in candidates
are allowed (as is common in the U.S.) or when votes are subsets or rankings (as is common in many
countries).

In an attempt to improve the amount of allocated memory, Molnar et al. suggested using a hash table
in which each entry is stored as a separate copy-over list. The copy-over lists are necessary when several
elements are mapped to the same entry. However, with a fixed hash function the worst-case behavior
of the table is very poor, and therefore the hash function must be randomly chosen and hidden from the
adversary. Given the hash function, the mechanism is deterministic and we refer to such a strategy as an
off-line randomized strategy. For instance, the mechanism may choose a pseudo-random function as its
hash function. However, this approach is not suitable for hostile environments, where secure storage for
the key of the hash function is not available.

Molnar et al. also showed that an on-line randomized strategy can significantly improve the amount
of allocated memory. A simple solution is to allocate an array of 2K entries, and insert an element by
randomly probing the array until an empty entry is found. However, as mentioned earlier, such a strategy
may enable covert channels: a maliciously designed storage mechanism can secretly embed information
into the stored data by choosing among the multiple valid representations of the same data.

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 48

http://dx.doi.org/10.4086/toc

STORING INFORMATION ON WRITE-ONCE MEMORIES

Tamper-evidence without write-once memories. The constructions of Molnar et al. achieved tamper-
evidence by exploiting the properties of write-once memories. Bethencourt, Boneh, and Waters [4]
took a different approach to designing a history-independent tamper-evident storage mechanism. They
developed a signature scheme for signing sets of elements with two important properties: the order in
which elements were added to the set cannot be determined from the signature, and elements cannot
be deleted from the set. Even though their solution uses only O(K) memory to store K elements, it is
randomized and requires secure storage for cryptographic keys (as well as computational assumptions).

3 Definitions and threat model

3.1 Formal definitions

A data structure is defined by a list of operations. We construct a data structure that supports the follow-
ing operations:

1. Insert(x) - stores the element x.

2. Seal() - finalizes the data structure (after this operation no Insert operations are allowed).

3. LookUp(x) - outputs FOUND if and only if x has already been stored.

4. RetrieveAll() - outputs all stored elements.

We say that two sequences of operations, S1 and S2, yield the same content if for all suffixes T , the
results returned by T when the prefix is S1 are identical to those returned by T when the prefix is S2.

Definition 3.1. A deterministic data structure is history-independent if any two sequences of operations
that yield the same content induce the same memory representation.

In our scenario, two sequences of operations yield the same content if and only if the corresponding
sets of stored elements are identical. The above definition is a simplification of the one suggested by
Naor and Teague [22], when dealing only with deterministic data structures. Naor and Teague also con-
sidered a stronger definition, in which the adversary gains control periodically, and obtains the current
memory representation at several points along the sequence of operations. This definition has also been
studied by Hartline et al. [15] and by Buchbinder and Petrank [6]. Since we deal only with deterministic
data structures, in our setting the definitions are equivalent.

3.2 Security goals and threat model

Our approach in defining the security goals and threat model is motivated by the possible attacks on
an electronic voting system. To make the discussion clearer, we frame the security goals and threat
model in terms of a vote storage mechanism. In an actual voting scenario, casting a ballot corresponds
to an Insert operation. In the simplest form of voting systems, the element inserted is the chosen
candidate’s name. In more complex voting systems, however, the inserted element may be a ranking or
a subset of the candidates, an encrypted ballot, or a combination of multiple choices. These possibilities

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 49

http://dx.doi.org/10.4086/toc

TAL MORAN, MONI NAOR, AND GIL SEGEV

are the reason for viewing the “universe of elements” as large, while the actual number of elements
inserted is small (at most the number of voters). Once the voting is complete (e. g., the polls close), the
Seal operation is performed. The purpose is to safeguard the ballots during transport (and for possible
auditing). Finally, to count the votes, the RetrieveAll operation is performed.

The main security goals we would like our storage mechanism to achieve are the following:2

1. Tamper-evidence: Any modification of votes after they were cast should be detected.

2. Privacy: No information about the order in which votes were cast should be revealed.

3. Robustness: No adversary should be able to cause the election process to fail.

We consider extremely powerful adversaries: computationally unbounded adversaries that can adap-
tively corrupt any number of voters (i. e., the adversary can choose to perform arbitrary Insert opera-
tions at arbitrary points in time). The extent to which each of the above security goals can be satisfied by
our mechanism depends on the assumed adversarial access. We consider two types of adversaries: post-
election adversaries that gain access to the mechanism at the end of the election process, and lunch-time
adversaries that gain access to the mechanism at several points in time during the election process. For
each type of adversaries we consider two levels of access to the mechanism: read-only access, and read-
write access. In Section 5.2 we evaluate the security of our mechanism according to the above security
goals and threat model.

4 The construction

4.1 Overview

Our construction relies on the fundamental technique of storing elements in a hash table and resolving
collisions separately in each entry of the table. More specifically, our storage mechanism incorporates
two “strategies”: a global strategy that maps elements to the entries of the table, and a local strategy
that resolves collisions that occur when several elements are mapped to the same entry. As long as both
strategies are deterministic, history-independent and write-once, the entire storage mechanism will also
share these properties.

The local strategy. We resolve collisions by storing the elements mapped to each entry of the table
in a separate copy-over list. Copy-over lists were introduced by Molnar et al. [20], and are based on
an observation by Naor and Teague [22], stating that one possible way of ensuring that the memory
representation is determined by the content of a data structure is to store the elements in lexicographical
order. When dealing with write-once media, however, we cannot sort in-place when a new element is
inserted. Instead, on every insertion, we compute the sorted list that includes the new element, copy
the contents of this list to the next available memory position, and erase the previous list (by setting all
the bits to 1). Note that storing K elements in a copy-over list requires Θ(K2) memory, and therefore is
reasonable only for small values of K.

2For simplicity we focus on the main and most relevant security goals. We refer the reader to the work of Molnar et al. [20]
for a more detailed list.

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 50

http://dx.doi.org/10.4086/toc

STORING INFORMATION ON WRITE-ONCE MEMORIES

The global strategy. Our goal is to establish a deterministic strategy for mapping elements to the
entries of the table. However, for any fixed hash function, the set of inserted elements can be chosen such
that the load in at least one of the entries will be too high to be efficiently handled by our local strategy.
Therefore, in order to ensure that the number of elements mapped to each entry remains relatively small
(in the worst case), we must apply a more sophisticated strategy.

Our global strategy stores the elements in a sequence of tables, where each table enables us to store
a fraction of the elements. Each element is first inserted into several entries of the first table. When an
entry overflows (i. e., more than some pre-determined number of elements are inserted into it), the entry
is “permanently deleted.” In this case, any elements that were stored in this entry and are not stored
elsewhere in the table are inserted into the next table in a similar manner. Thus, we are interested in
finding a sequence of functions that map the universe of elements to the entries of the tables, such that
the total number of tables, the size of each table, and the number of collisions are minimized. We view
such functions as bipartite graphs G = (L,R,E), where the set of vertices on the left, L, is identified with
the universe of elements, and the vertices on the right, R, are identified with the entries of a table. Given
a set of elements S⊆ L to store, the number of elements mapped to each table entry y ∈ R is the number
of neighbors that y has from the set S. We would like the set S⊆ L to have as few as possible overflowing
entries, i. e., as few as possible vertices y ∈ R with many neighbors in S.

More specifically, we are interested in bipartite graphs G = (L,R,E) with the following property:
Every set S⊆ L of size at most K contains “many” vertices with low-degree neighbors. We refer to such
graphs as bounded-neighbor expanders.3 Our global strategy will map all the elements in S which have
a low-degree neighbor to those neighbors, and this guarantees that the table entries corresponding to
those neighbors will not overflow at any stage. However, not every element in S will have a low-degree
neighbor. For this reason, we use a sequence of bipartite graphs, all sharing the same left set L. Each
graph will enable us to store a fraction of the elements in S. Formally, we define:

Definition 4.1. Let G = (L,R,E) be a bipartite graph. We say that a vertex x ∈ L has an `-degree
neighbor with respect to S⊆ L, if it has a neighbor y ∈ R with no more than ` incoming edges from S.

Definition 4.2. A bipartite graph G = (L,R,E) is a (K,α, `)-bounded-neighbor expander, if every S⊆ L
of size K contains at least α|S| vertices that have an `-degree neighbor with respect to S.

We denote |L|= N. In addition, we assume that all the vertices on the left side have the same degree
D. We discuss and provide constructions of bounded-neighbor expander graphs in Section 6.

4.2 Details

Let G0, . . . ,Gt denote a sequence of bounded-neighbor expanders Gi = (L = [N],Ri,Ei) with left-degree
Di. The graphs are constructed such that:

• G0 is a (K0 = K,α0, `0)-bounded-neighbor expander, for some α0 and `0.

• For every 1 ≤ i ≤ t, Gi is a (Ki,αi, `i)-bounded-neighbor expander, for some αi and `i, where
Ki = (1−αi−1)Ki−1.

3The definition is motivated by the notion of bipartite unique-neighbor expanders presented by Alon and Capalbo [1].

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 51

http://dx.doi.org/10.4086/toc

TAL MORAN, MONI NAOR, AND GIL SEGEV

As described in Section 4.1, the elements are stored in a sequence of tables, T0, . . . ,Tt . Each ta-
ble Ti is identified with the right set Ri of the bipartite graph Gi, and contains |Ri| entries denoted by
Ti[1], . . . ,Ti[|Ri|]. The elements are mapped to the entries of the tables and are stored there using a
separate copy-over list at each entry. The copy-over list at each entry of table Ti will store at most `i

elements. We denote by |Ti[y]| the number of elements stored in the copy-over list Ti[y], and use the
notation Ti[y] = ∗ to indicate that the copy-over list Ti[y] overflowed and was permanently deleted.

In order to insert or look-up an element x, we execute Insert(x,T0) or LookUp(x,T0), respectively.
The Seal() operation is performed as in the mechanism of Molnar et al. [20] by using the encod-
ing discussed in the introduction (specifically, the seal operation concatenates to the current content
of the memory the binary representation of the Hamming weight of its complement). The operations
Insert(x,Ti), LookUp(x,Ti), and RetrieveAll() are described in Figure 1.

Insert(x,Ti):
1: for all neighbors y of x in the graph Gi do
2: if Ti[y] = ∗ then
3: Continue to the next neighbor of x
4: else if |Ti[y]|< `i then
5: Store x in the copy-over list Ti[y]
6: else
7: for all x′ in Ti[y] such that x′ does not appear in any other list in Ti do
8: Execute Insert(x′,Ti+1)
9: Set Ti[y]←∗ // erase the memory blocks of Ti[y]

10: if x was not stored in any copy-over list in the previous step then
11: Execute Insert(x,Ti+1)

LookUp(x,Ti):
1: for all neighbors y of x in the graph Gi do
2: if x is stored in the copy-over list Ti[y] then
3: return FOUND and halt
4: if x was not found in a previous step and i = t then
5: return NOT FOUND
6: else
7: return LookUp(x,Ti+1)

RetrieveAll():
1: for all tables Ti do
2: for all copy-over lists Ti[y] do
3: if Ti[y] 6= ∗ then
4: Output all elements of Ti[y] that have not yet been output

Figure 1: The Insert, LookUp, and RetrieveAll operations.

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 52

http://dx.doi.org/10.4086/toc

STORING INFORMATION ON WRITE-ONCE MEMORIES

5 Analysis of the construction

5.1 Soundness and performance

We first prove that the storage mechanism is history-independent, i. e., any two sequences of insertions
that yield the same content, induce the same memory representation. Then, we show that each table
indeed stores a fraction of the elements. Finally we summarize the properties of the constructions.

Lemma 5.1. For every set S⊆ [N] of size at most K, any insertion order of its elements induces the same
memory representation.

Proof. Let S⊆ [N] of size at most K. We prove by induction on 0≤ i≤ t that the memory representation
of table Ti is independent of the insertion order.

For i = 0, denote by Y0 the set of vertices in R0 that have no more than `0 incoming edges from S in
the graph G0. Then, it is clear that for every y ∈Y0 and for any insertion order, the copy-over list in entry
T0[y] never contains more than `0 elements, and is therefore never erased. Moreover, this list will always
contain the same elements (all the neighbors of y in S) which will be stored in a history-independent
manner. In addition, for every y ∈ R0 \Y0 and for any insertion order, the copy-over list at entry T0[y]
will be erased at some point (since it will exceed the `0 upper bound), and will contain a fixed number
of erased blocks. Therefore, the memory representation of T0 is independent of the insertion order.

Suppose now that the memory representation of T0, . . . ,Ti−1 is independent of the insertion order. In
particular this implies that for every set S there exists a fixed Si ⊂ S such that the elements of Si are all
stored in T0, . . . ,Ti−1. Let S′i = S \ Si. Then, in any insertion order, only the elements of S′i are inserted
into table Ti (note that although the elements of S′i are inserted into table Ti this does not necessarily
mean that they will eventually be stored in Ti). Now, denote by Yi the set of vertices in Ri that have no
more than `i incoming edges from Si in the graph Gi. Then, for every y ∈ Yi and for any insertion order,
the copy-over list in entry Ti[y] will never contain more than `i elements, and therefore will store all the
neighbors of y from S′i in a history independent manner. In addition, for every y ∈ Ri \Yi and for any
insertion order, the copy-over list at entry Ti[y] will be erased at some point (since it will exceed the `i

upper bound), and will contain a fixed number of erased blocks. Therefore, the memory representation
of Ti is independent of the insertion order as well.

Lemma 5.2. For every set S ⊆ [N] of size at most K, for every insertion order of its elements, and for
every 0 ≤ i ≤ t, the number of Insert(·,Ti) calls is at most Ki. In particular, if there exists an α > 0
such that αi≥α for every Gi, then setting t = d(lnK)/αe guarantees that every such set S is successfully
stored.

Proof. We prove the first part of the lemma by induction on i. For i = 0, it is clear that the number of
Insert(·,T0) calls is at most K0 = K, since S contains at most K elements.

Suppose now that the number of Insert(·,Ti) calls is at most Ki. Fix an insertion ordering, and
denote by Si the set of elements x for which an Insert(x,Ti) call was executed. An element x′ will
be inserted by Insert(x′,Ti+1) only if it was previously inserted by Insert(x′,Ti), and then either did
not find an available copy-over list to enter, or was erased when a copy-over list exceeded the `i upper
bound. Notice that in the graph Gi, if some x ∈ Si has a neighbor y ∈ Ri with at most `i incoming edges

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 53

http://dx.doi.org/10.4086/toc

TAL MORAN, MONI NAOR, AND GIL SEGEV

from Si, then x will be successfully placed in the copy-over list Ti[y]. This is due to the fact that y has at
most `i incoming edges from Si, and therefore the copy-over list Ti[y] will not be erased.

This implies that the number of Insert(·,Ti+1) calls is upper bounded by the number of vertices
in Si which do not have an `i-degree neighbor with respect to Si in Gi. We now claim that the number
of such vertices is at most (1−αi)Ki = Ki+1. Extend Si arbitrarily to a set S′i of size exactly Ki. Then,
Definition 4.2 implies there are at least αiKi vertices in S′i that have an `i-degree neighbor with respect
to S′i. Since Si ⊆ S′i, then any vertex x ∈ Si that has an `i-degree neighbor with respect to S′i, also has (the
same) `i-degree neighbor with respect to Si. This implies that at most (1−αi)Ki vertices in S′i do not
have an `i-degree neighbor with respect to Si. In particular, since Si ⊆ S′i, there are at most (1−αi)Ki

vertices in Si that do not have an `i-degree neighbor with respect to Si.
Now, if there exists an α > 0 such that αi ≥ α for every Gi, then in particular the number of

Insert(·,Tt) calls is at most

Kt = K ·
t−1

∏
i=0

(1−αi)≤ K · (1−α)t ≤ K · e−αt ≤ 1 .

Thus, at most one element is inserted into the last table Tt , and therefore the set S is successfully stored
in the sequence of t +1 tables.

Lemma 5.3. The storage mechanism has the following properties:

1. The total amount of allocated memory is at most ∑
t
i=0 |Ri| · `2

i .

2. The amortized insertion time is at most 1
K ·
(
∑

t
i=0 |Ri| · `2

i
)
+∑

t
i=0 D2

i · `3
i .

3. The worst-case look-up time is at most 2 ·∑t
i=0 Di · (log`i +1).

Proof. Each table Ti contains |Ri| entries, each of which stores at most `i elements in a copy-over list by
using at most `2

i memory blocks. Therefore, the total amount of allocated memory is at most ∑
t
i=0 |Ri| ·`2

i .
In order to bound the amortized insertion time, we consider the number of write operations and the

number of read operations separately. Since the storage strategy is write-once, then the total number
of write operations when storing K elements is upper bounded by the amount of memory in which the
elements are stored. Therefore, the amortized number of write operations per insertion is at most

1
K
·

(
t

∑
i=0
|Ri| · `2

i

)
.

We bound the amortized number of read operation as follows: Each element is inserted into at most t
tables, and into Di entries of each table. In the worst case, when an element is inserted into an overflow-
ing copy-over list, we scan the current table for all the `i elements that are stored in the overflowing list,
which can be done in Di · `2

i read operations for every such element. Therefore, the amortized number
of read operations is at most ∑

t
i=0 D2

i · `3
i .

Finally, when searching for an element, each table has to be accessed at only Di entries, where each
entry contains at most `2

i memory blocks (and therefore can be searched in time d2log`ie). Therefore,
the worst-case look-up time is at most 2 ·∑t

i=0 Di · (log`i +1).

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 54

http://dx.doi.org/10.4086/toc

STORING INFORMATION ON WRITE-ONCE MEMORIES

Theorems 1.1 and 1.2 now follow by instantiating the mechanism with the bounded-neighbor ex-
panders from Corollary 6.7 and Theorem 6.1, respectively.

Proof of Theorem 1.1. When the sequence of graphs G0, . . . ,Gt are constructed according to Corol-
lary 6.7 with ε = 1/2, we have that every Gi is a (Ki,αi, `i)-bounded-neighbor expander, such that

αi =
|Ri|

4DiKi
≥ cKi

log3(N)
· 1

4DiKi
=

c
4Di log3(N)

=
c

4D log3(N)
,

for some constant c > 0 and D = polylog(N). Therefore, by Lemma 5.2, we can set t =
⌈ lnK

α

⌉
, where

α = c
4D log3(N)

. Now, Lemma 5.3 states that the total amount of allocated memory is

t

∑
i=0
|Ri| · `2

i =
t

∑
i=0
|Ri| ·

(
4DiKi

|Ri|

)2

= 16D2
t

∑
i=0

K2
i

|Ri|
≤ 16D2 log3(N)

c

t

∑
i=0

Ki

≤ 16KD2 log3(N)
c

t

∑
i=0

(1−α)i ≤ 16KD2 log3(N)
c

· 1
α

=
64KD3 log6(N)

c2 .

Thus, the required memory allocation is O(K · polylog(N)). Very similarly to the above calculation,
Lemma 5.3 further implies that the amortized insertion time and the worst-case look-up time are
O(polylog(N)).

Proof of Theorem 1.2. When the sequence of graphs G0, . . . ,Gt are constructed according to Corol-
lary 6.1, we have that every Gi is a (Ki,1/2,1)-bounded-neighbor expander, where

Ki = K/2i , |Ri|= c1 ·Ki log(N/Ki) and Di = c2 · log(N/Ki)

for some constants c1,c2 > 0. Now, Lemma 5.3 states that:

1. The total amount of allocated memory is
t

∑
i=0
|Ri| · `2

i = c1 ·
t

∑
i=0

K
2i · log

(
N ·2i

K

)
= c1 ·

t

∑
i=0

K
2i · log

(
N
K

)
+ c1 ·

t

∑
i=0

i ·K
2i

≤ 2c1K log
(

N
K

)
+2c1K = O

(
K log

(
N
K

))
.

2. The amortized insertion time is at most

1
K
·

(
t

∑
i=0
|Ri| · `2

i

)
+

t

∑
i=0

D2
i · `3

i =
1
K
·
(

2c1K log
(

N
K

)
+2c1K

)
+ c2 ·

t

∑
i=0

log2
(

N ·2i

K

)
= O

(
log2 N · logK

)
.

3. The worst-case lookup time is at most

2
t

∑
i=0

Di = 2c2 ·
t

∑
i=0

log
(

N ·2i

K

)
= O(logN · logK) .

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 55

http://dx.doi.org/10.4086/toc

TAL MORAN, MONI NAOR, AND GIL SEGEV

5.2 Security evaluation and characterization

In this section we evaluate the security of our mechanism according to the security goals and threat model
which we formalized in Section 3.2 in terms of vote storage mechanisms. In addition, we characterize
the class of mechanisms that are deterministic, history-independent, and write-once and provide tamper-
evidence against a lunch-time adversary with read-write access. Recall that our main security goals
are to guarantee tamper-evidence, privacy, and robustness, and we consider two types of adversaries:
post-election adversaries and lunch-time adversaries.

5.2.1 Security against post-elections adversaries

We first consider a post-election adversary that has read-only access to the mechanism. In this case,
tamper-evidence and robustness are trivially satisfied since the adversary does not modify the records.
Privacy is guaranteed due to the history-independence of the mechanism (see Lemma 5.1).

Now consider a post-election adversary that has read-write access to the mechanism. In this case,
tamper-evidence is guaranteed due to the write-once memory: at the end of the election process, the
records are sealed using the encoding suggested by Molnar et al. [20], and therefore it is impossible to
undetectably modify the records. Privacy is again guaranteed by the history-independence property of
the mechanism. Robustness, however, cannot be satisfied in such a case since the adversary can simply
erase the records by flipping all bits to 1.

5.2.2 Security against lunch-time adversaries

Consider a lunch-time adversary that has read-only access to the mechanism. That is, the adversary
obtains the memory representation of the mechanism at several points in time during the election pro-
cess. As in the case of a read-only post-election adversary, tamper-evidence and robustness are trivially
satisfied. Privacy is guaranteed by the strong history-independence property of the mechanism. More
specifically, each time the adversary obtains the memory representation of the mechanism, the only in-
formation that is leaked is the set of elements inserted since the previous time the memory representation
was revealed. This is the highest possible level of privacy against such an adversary.

We now turn to consider a lunch-time adversary that has read-write access to the mechanism. That
is, the adversary gains read-write access to the mechanism at several points in time during the election
process. In such a case, our mechanism still provides the highest possible level of privacy, exactly as in
the case of a read-only lunch-time adversary. Robustness, however, is impossible to guarantee in such a
case since the adversary can erase the records.

The task of guaranteeing tamper-evidence against a read-write lunch-time adversary turns out to be
more complicated. When considering such an adversary, the best we can hope for is a guarantee about
operations that took place before the attack (i. e., before the adversary gained control). The adversary
should not be able to undetectably delete votes that were previously cast. Unfortunately, our mechanism
does not guarantee this property, and in fact we manage to provide a complete characterization of the
class of deterministic, history-independent and write-once mechanisms that do guarantee this property.
We show that any such mechanism guarantees this property if and only if it stores the elements according
to an (N,K +1)-superimposed code [17]. A known lower bound on superimposed codes (see, for exam-

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 56

http://dx.doi.org/10.4086/toc

STORING INFORMATION ON WRITE-ONCE MEMORIES

ple, [12, 25]) implies that Ω
(
(K2/logK) · logN

)
memory bits are required in order to store K elements,

whereas our mechanism uses only O(K ·polylog(N)) bits. Moreover, using known explicit constructions
of superimposed codes we show that O(K2 log2 N) bits suffice, and this proves Theorem 1.3.

The reason that our mechanism is not tamper-evident against read-write lunch-time adversaries is
as follows. Suppose there exist two legal memory configurations, C1 and C2, with the following three
properties: (1) C1 is obtained by inserting some element x, (2) C2 is obtained by inserting a set of K
elements x1, . . . ,xK that are all different from x, and (3) C1 is “contained” in C2 in the sense that, for
every index i, if the i-th bit of C1 is set to 1 then also the i-th bit of C2 is set to 1. The existence
of such memory configurations C1 and C2 enables an adversary to mount the following attack: the
adversary gains control over the mechanism with memory representation C1 (i. e., only the element x
was inserted), and simply changes it to C2 (note that this is possible due to property (3)). Now, the
memory representation corresponds to the set of elements x1, . . . ,xK , and there is no trace of the fact
that x was ever inserted. That is, the adversary managed to delete an element that was inserted before
the adversary gained control, and this is clearly undetectable since the new memory representation is
legal. A superimposed code has exactly the property that prevents such a situation: a codeword cannot
be covered by any small number of other codewords.

A construction using superimposed codes. We present a simple construction of a deterministic,
history-independent and write-once mechanism, which requires O(K2 log2 N) memory bits in order to
store an increasingly growing set of at most K elements taken from the universe [N]. The mechanism
maps the elements of the universe into entries of a table according to a superimposed code. More
specifically, given N and K, a binary superimposed code of size N guarantees that any codeword is
not contained in the bit-wise or of any other K − 1 codewords. In what follows for binary strings
y = y1 · · ·yn ∈ {0,1}n and y′ = y′1 · · ·y′n ∈ {0,1}n we use y ⊆ y′ for denoting that for every 1 ≤ i ≤ n it
holds that yi ≤ y′i, and we use y * y′ for denoting that there exists an index 1 ≤ i ≤ n such that yi > y′i
(i. e., we naturally interpret y and y′ as subsets of {1, . . . ,n}). We use the following result of Erdős,
Frankl, and Füredi [11].

Theorem 5.4 ([11]). For every N and ` there exists an efficiently computable code C : [N]→ {0,1}d

where d ≤ 16`2 logN, such that for every distinct x1, . . . ,x` ∈ [N] it holds that C(x1) *
∨`

i=2C(xi).

Given such a code C : [N]→{0,1}d with ` = K +1, the mechanism consists of a table T containing
d entries, denoted T [1], . . . ,T [d]. In order to insert an element x, we store x in all entries T [i] for which
C(x)i = 1. If an entry is already occupied, it is permanently deleted. The superimposed code guarantees
that if at most K elements are inserted, then each element will be successfully stored (that is, for each
element there exists an entry which is unique for the element). The mechanism is clearly history-
independent and write-once. Moreover, the superimposed code guarantees tamper-evidence against a
read-write lunch-time adversary: an existing element cannot be deleted unless more than K elements are
inserted.

A lower bound. We prove a lower bound on the amount of memory bits used by any mechanism which
is deterministic, history-independent, write-once, and guarantees tamper-evidence against a read-write
lunch-time adversary. We show that any such mechanism which uses d bits of memory can be used to

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 57

http://dx.doi.org/10.4086/toc

TAL MORAN, MONI NAOR, AND GIL SEGEV

define an (N,K +1)-superimposed code C : [N]→{0,1}d . Thus, the above mentioned lower bound for
superimposed codes implies that d = Ω

(
(K2/logK) · logN

)
.

Given such a mechanism, we define a mapping C : [N]→ {0,1}d as follows. For any x ∈ [N] let
C(x) denote the memory representation of the mechanism when it contains the singleton {x}. In what
follows we argue that C is an (N,K + 1)-superimposed code. First, we extend the mapping C for sets
of elements: for any set S ⊂ [N] denote by C(S) the memory representation of the mechanism when it
contains the set S. We note that the mapping C is well-defined since a mechanism which is deterministic
and history-independent must have a unique representation for each set of elements. In addition, the
write-once property implies that C is monotone. That is, for any two sets S1,S2 ⊆ [N] such that S1 ⊆ S2
it holds that C(S1)⊆C(S2) (that is, C(S2) can be obtained from C(S1)by only flipping bits from 0 to 1).

Assume for the purpose of deriving a contradiction that C is not an (N,K + 1)-superimposed code.
Then there exist distinct x1, . . . ,xK+1 ∈ [N] for which C(x1) ⊆

∨K+1
i=2 C(xi). Notice that this implies that

C(x1)⊆C({x2, . . . ,xK+1}). Consider an attack in where the adversary gains control over the mechanism
when it contains the singleton {x1}. At this point the adversary can modify the memory representation
to C({x2, . . . ,xK+1}) by flipping bits from 0 to 1, and obtain the unique memory representation of the
set {x2, . . . ,xK+1}. That is, the adversary managed to undetectably delete x1. This yields a contradiction
to the assumed security of the mechanism, and therefore the mapping C is an (N,K + 1)-superimposed
code.

6 Constructions of bounded-neighbor expanders

Given N and K we are interested in constructing a (K,α, `)-bounded-neighbor expander G = (L =
[N],R,E), such that α is maximized, and ` and |R| are minimized. We first present a non-constructive
proof of the existence of a bounded-neighbor expander that enjoys “the best of the two worlds”: α = 1/2,
` = 1, and almost linear |R|. Then, we provide an explicit construction of bounded-neighbor expanders,
by showing that any disperser [26] is in fact a bounded-neighbor expander.

6.1 A non-constructive proof

We prove the following theorem:

Theorem 6.1. For every N and K, there exists a (K,1/2,1)-bounded-neighbor expander G = (L,R,E),
with |L|= N, |R|= O(K log(N/K)) and left-degree D = O(log(N/K)).

In order to prove the theorem, we show that for every N and K, there exists a family H containing
O(log(N/K)) functions h : [N]→ [3K] with the following property: For every S ⊆ [N] of size K, there
exists a function h ∈H such that h restricted to S maps at least K/2 elements of S to unique elements
of [3K]. Alternatively, we can view each function h as a bipartite graph Gh = ([N], [3K],Eh), where
(x,y) ∈ Eh if and only if h(x) = y, and ask that for every S⊆ [N] of size K there exists a function h ∈H

such that at least K/2 elements in S have 1-degree neighbors with respect to S in Gh.
Given such a family H = {h1, . . . ,ht}, we define a bipartite graph G = (L = [N],R,E) where R

contains t = O(log(N/K)) copies of [3K]. Each copy represents a function in H. More specifically,
each vertex x ∈ [N] has t outgoing edges, where the i-th edge is connected to hi(x) in the i-th copy of
[3K]. See Figure 2 for an illustration of the constructed graph.

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 58

http://dx.doi.org/10.4086/toc

STORING INFORMATION ON WRITE-ONCE MEMORIES

Figure 2: The constructed bounded-neighbor expander for the case t = 3.

Lemma 6.2. Let X denote the number of bins that contain exactly one ball, when K balls are placed
independently and uniformly at random in 3K bins. Then,

Pr [X < K/2] < exp(−K/48) .

Proof. For every 1≤ i≤K, denote by Xi the Boolean random variable that equals 1 if and only if the i-th
ball is placed in a bin that does not contain any other balls. Then X = ∑

K
i=1 Xi. Note that since K balls

are placed in 3K bins, then there are always at least 2K empty bins. Therefore, for every ~u ∈ {0,1}K−1

and for every 1≤ i≤ K,

Pr [Xi = 1 | (X1, . . . ,Xi−1,Xi+1, . . . ,XK) =~u]≥ 2/3 .

Let Y1, . . . ,YK denote K independent and identically distributed Boolean random variables such that
Pr [Y1 = 1] = 2/3, and let Y = ∑

K
i=1Yi. A standard coupling argument shows that for every t > 0 it holds

that Pr [X < t]≤ Pr [Y < t]. Therefore, by applying a Chernoff bound for Y , we obtain

Pr [X < K/2]≤ Pr [Y < K/2]≤ exp(−K/48) .

The following lemma proves the existence of the family H, which is used to construct the bounded-
neighbor expander as explained above.

Lemma 6.3. For every N and K ≤ N, there exists a family H containing O(log(N/K)) functions h :
[N]→ [3K], such that for every S ⊆ [N] of size K, there exists a function h ∈H whose restriction to S
maps at least K/2 elements of S to unique elements of [3K].

Proof. Fix N and K ≤ N. We apply the probabilistic method and show that with positive probability
over the random choice of such a family H it holds that for every S ⊆ [N] of size K, there exists a

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 59

http://dx.doi.org/10.4086/toc

TAL MORAN, MONI NAOR, AND GIL SEGEV

function h ∈ H whose restriction to S maps at least K/2 elements of S to unique elements of [3K].
More specifically, consider the experiment of constructing the family H by choosing uniformly and
independently at random a collection of

|H|=
⌈

48
K
· log

(
N
K

)⌉
+1 = O

(
log
(

N
K

))
functions h : [N] → [3K]. Then Lemma 6.2 implies that for every fixed set S ⊆ [N] of size K, the
probability that there is no function h ∈H whose restriction to S maps at least K/2 elements of S to
unique elements of [3K] is at most exp(−K/48 · |H|). Therefore, the probability over the choice of H

that there exists a set S⊆ [N] of size K for which there is no function h ∈H whose restriction to S maps
at least K/2 elements of S to unique elements of [3K] is at most(

N
K

)
exp
(

K
48
· |H|

)
< 1 .

6.2 An explicit construction

We provide an explicit construction of bounded-neighbor expanders by showing that any disperser is a
bounded-neighbor expander. Dispersers [26] are combinatorial objects with many random-like proper-
ties. Dispersers can be viewed as functions that take two inputs: a string that is not uniformly distributed,
but has some randomness; and a shorter string that is completely random, and output a string whose dis-
tribution is guaranteed to have a large support. Dispersers have found many applications in computer
science, such as simulation with weak sources, deterministic amplification, and many more (see [23]
for a comprehensive survey). We now formally define dispersers, and then show that any disperser is a
bounded-neighbor expander.

Definition 6.4. A bipartite graph G = (L,R,E) is a (K,ε)-disperser if for every S⊆ L of size at least K,
it holds that |Γ(S)| ≥ (1− ε)|R|, where Γ(S) denotes the set of neighbors of the vertices in S.

Lemma 6.5. Any (K,ε)-disperser G = (L,R,E) with left-degree D is a (K,α, `)-bounded-neighbor
expander, for α = (1−ε)|R|

2DK and ` = d1/αe.

Proof. We have to show that every set S⊆ L of size K contains least α|S| vertices that have an `-degree
neighbor with respect to S (that is, a neighbor that has at most ` incoming edges from S). Therefore, we
can focus on the subgraph G′ = (S,Γ(S),E ′), where E ′ are all the outgoing edges of S. There are exactly
DK edges in G′, and therefore the average degree of the vertices of Γ(S) in G′ is

DK
|Γ(S)|

≤ DK
(1− ε)|R|

≤ `

2
.

This implies that at least |Γ(S)|/2 vertices in Γ(S) have degree at most ` in G′. Thus, the number of
vertices in S which have an `-degree neighbor with respect to S is at least

|Γ(S)|
2D

≥ (1− ε)|R|
2D

=
(1− ε)|R|

2DK
· |S|= α|S| .

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 60

http://dx.doi.org/10.4086/toc

STORING INFORMATION ON WRITE-ONCE MEMORIES

Lemma 6.5 can be instantiated with the following disperser construction of Ta-Shma, Umans, and
Zuckerman [28].

Theorem 6.6 ([28]). For every n, k, and constant ε > 0, there exists an efficiently computable (K =
2k,ε)-disperser G = (L,R,E), with |L|= N = 2n, |R|= Θ(K/ log3(N)) and left-degree D = polylog(N).

Corollary 6.7. For every n, k and constant ε > 0, there exists an efficiently computable (K = 2k,α,1/α)-
bounded-neighbor expander G = (L,R,E), with |L| = N = 2n, |R| = Θ(K/ log3(N)), left-degree D =
polylog(N), and α = (1− ε)|R|/(2DK).

An alternative approach for constructing bounded-neighbor expanders is by using lossless con-
densers.4 This approach guarantees constant α and very small `, but larger |R|. The recent construction
of Guruswami, Umans, and Vadhan [14] yields a bounded-neighbor expander with |R| = O(K1+ε), for
every constant ε > 0. Therefore, this is preferable only when dealing with relatively small values of K,
such as K = polylog(N).

7 A deterministic non-adaptive conflict resolution algorithm

In the conflict resolution problem, N stations are tapped into a multiple-access channel, and the goal is
to resolve conflicts that arise when K stations transmit simultaneously over the channel. A conflict
resolution algorithm schedules retransmissions, such that each of the conflicting stations eventually
transmits individually to the channel. At each step, if more than one station transmits, then all packets
are lost. After each step the transmitting stations receive feedback indicating only the success or failure
of their transmission. A station that successfully transmits halts, and waits for the algorithm to terminate.

A conflict resolution algorithm is non-adaptive if the choice of the transmitting stations in each
step does not depend on information gathered from previous steps. The efficiency measure for conflict
resolution algorithms is the total number of steps it takes to resolve conflicts in the worst case, where
worst case refers to the maximum over all possible sets of K conflicting stations.

Several deterministic adaptive solutions are known. Capetanakis’s tree algorithms [8, 9], that resolve
conflicts in O(K log(N/K)) steps, were devised almost three decades ago. Greenberg and Winograd [13]
showed that any deterministic algorithm must run for Ω(K(logN)/ logK) steps. In 1985, Komlós and
Greenberg [18] provided a non-constructive proof for the existence of a deterministic and non-adaptive
algorithm that resolves conflicts in O(K log(N/K)) steps. However, no explicit algorithm with a similar
performance guarantee was known. As noted by Komlós and Greenberg, a very simple deterministic
and non-adaptive algorithm can resolve conflicts in O(K2 logN) steps. This simple solution will be used
by our algorithm in order to “locally” resolve a small number of conflicts.

7.1 Overview of the algorithm

We adapt the main idea underlying our storage mechanism by following similar “strategies”: A global
strategy that maps stations to time intervals, and a local strategy that schedules retransmissions inside the

4We note that unbalanced expanders have been already considered for storing sets of elements by Buhrman, Miltersen,
Radhakrishnan, and Venkatesh [7] and by Ta-Shma [27] with the property that membership queries can be answered by
querying just one bit.

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 61

http://dx.doi.org/10.4086/toc

TAL MORAN, MONI NAOR, AND GIL SEGEV

intervals. The global strategy is identical to that of the storage mechanism: We map the N stations to time
intervals using a sequence of bounded-neighbor expanders. The local strategy schedules retransmissions
inside the intervals by associating the stations with codewords of a superimposed code [17]. Given N
and `, a binary superimposed code of size N guarantees that any codeword is not contained in the bit-
wise or of any other `−1 codewords. For our algorithm we use the superimposed code of Erdős, Frankl,
and Füredi [11] whose properties we stated in Theorem 5.4, and note that any other superimposed code
with similar asymptotic guarantees can be used.

In every interval, we associate each station x that is mapped to the interval with a codeword C(x) ∈
{0,1}d . Each interval contains d steps, and the station x transmits at its j-th step if and only if the j-th
entry of C(x) is 1. The superimposed code guarantees that if at most ` stations are mapped to an interval,
then each station will successfully transmit. This approach provides a deterministic and non-adaptive
algorithm that resolves conflicts among any ` stations in d = O(`2 logN) steps.

7.2 The algorithm

Let G0, . . . ,Gt denote a sequence of bounded-neighbor expanders Gi = (L = [N],Ri,Ei) with left-degree
Di, and let C0, . . . ,Ct denote a sequence of codes Ci : [N]→ {0,1}di . The graphs and codes are con-
structed such that:

• G0 is a (K0 = K,α0, `0)-bounded-neighbor expander, for some α0 and `0.

• For every 1 ≤ i ≤ t, Gi is a (Ki,αi, `i)-bounded-neighbor expander, for some αi and `i, where
Ki = (1−αi−1)Ki−1.

• For every 0≤ i≤ t, Ci has the property that for every distinct x1, . . . ,x`i ∈ [N] it holds that Ci(x1) *∨`i
j=2Ci(x j).

The algorithm runs in a sequence of intervals I0, . . . , It . Each interval Ii is identified with the right set
Ri of the bipartite graph Gi, and is divided into |Ri| sub-intervals denoted by Ii[1], . . . , Ii[|Ri|]. A station
x ∈ [N] participates in sub-interval Ii[y] if and only if x is adjacent to y in the graph Gi. The sub-interval
Ii[y] contains di steps, and a participating station x transmits at its j-th step if and only if the j-th entry
of Ci(x) is 1.

The following lemma summarizes the properties of the algorithm. Theorem 1.4 is proved by instan-
tiating the algorithm with the explicit family of bounded-neighbor expanders constructed in Section 6.
The proof is almost identical to the proof of Theorem 1.1, and is omitted.

Lemma 7.1. The following properties hold:

1. For every set of K conflicting stations and for every 0≤ i≤ t, the number of active stations at the
beginning of interval Ii is at most Ki.

2. For every set of K conflicting stations, the algorithm terminates in 16
(
∑

t
i=0 |Ri| · `2

i
)
· logN steps.

Proof. We prove the first part of the lemma, and the second part of the lemma follows directly from the
description of the algorithm, the first part of the lemma, and Theorem 5.4.

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 62

http://dx.doi.org/10.4086/toc

STORING INFORMATION ON WRITE-ONCE MEMORIES

We prove the first part of the lemma by induction on i. Denote by S ⊆ [N] the set of K conflicting
stations, and for every 1≤ i≤ t denote by Si ⊆ [N] the set of stations that are still active at the beginning
of interval Ii. Then S0 = S, which implies that |S0| ≤ K0 = K.

Suppose now that |Si| ≤ Ki, i. e., that the number of active stations at the beginning of interval Ii is
at most Ki. Notice that in the graph Gi, if some x ∈ Si has a neighbor y ∈ Ri with at most `i incoming
edges from Si, then x will successfully transmit during the sub-interval Ii[y] due to the property of the
superimposed code Ci. This implies that the number of stations which will remain active at the beginning
of interval Ii+1 (i. e., the size of the set Si+1) is upper bounded by the number of vertices in Si which do
not have an `i-degree neighbor with respect to Si in Gi. We now claim that the number of such vertices is
at most (1−αi)Ki = Ki+1. Extend Si arbitrarily to a set S′i of size exactly Ki. Then, Definition 4.2 implies
there are at least αKi vertices in S′i that have an `i-degree neighbor with respect to S′i. Since Si ⊆ S′i, then
any vertex x ∈ Si that has an `i-degree neighbor with respect to S′i, also has an `i-degree neighbor with
respect to Si (this is the same neighbor). This implies that at most (1−αi)Ki vertices in S′i do not have
an `i-degree neighbor with respect to Si. In particular, since Si ⊆ S′i, there are at most (1−αi)Ki vertices
in Si that do not have an `i-degree neighbor with respect to Si. Therefore, |Si+1| ≤ Ki+1 and the lemma
follows.

8 Concluding remarks

Dealing with multi-sets. Our storage mechanism can be easily adapted to store multi-sets of K ele-
ments taken from a universe of size N. This setting can be viewed as dealing with a universe of size
N′ = NK, and storing an element x ∈ [N] as (x, i) where i ∈ [K] is the appearance number of the element.
Note that in order to insert an element x we first need to retrieve its current number of appearances.
This number can be retrieved using logK invocations of the LookUp procedure in order to identify the
maximal i ∈ [K] such that (x, i) is stored (using a binary search). These modifications only add poly-
logarithmic factors to the performance of the mechanism, and therefore Theorem 1.1 holds in this setting
as well.

Non-amortized insertion time. The amortized insertion time of our storage mechanism is at most
poly-logarithmic. However, the worst-case insertion time may be larger, since an insertion may have a
cascading effect. In some cases, this might enable a side-channel attack in which the adversary exploits
the insertion times in order to obtain information on the order in which elements were inserted. We note
that if multiple writes are allowed, then by combining our global strategy with the hashing method of
Naor and Teague [22], we can achieve a poly-logarithmic worst-case insertion time, as well as linear
memory allocation. Whether this is possible using write-once memory remains an open problem.

Bounded-neighbor expanders. The explicit construction of bounded-neighbor expanders in Section 6
does not achieve the parameters that one can hope for according to Theorem 6.1. It would be interesting
to improve our explicit construction, as any such improvement will in turn lead to a more efficient
instantiation of our storage mechanism.

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 63

http://dx.doi.org/10.4086/toc

TAL MORAN, MONI NAOR, AND GIL SEGEV

Optimal monotone encoding. The total amount of allocated bits required by the mechanism stated
in Theorem 1.2 is O(K log(N) log(N/K)). This leaves a gap between the optimal construction using
multiple-writes (that requires only O(K log(N/K)) bits) and our construction using write-once memory.
This can be alternatively formulated as the problem of finding an optimal monotone encoding: find the
minimal integer M = M(N,K) such that any set S⊆ [N] of size at most K can be mapped to a set VS⊆ [M],
with the property that VS1 ⊆ VS2 whenever S1 ⊆ S2. Note that any such encoding can be translated into
a write-once strategy that requires a memory of size M bits. This problem was posed in a preliminary
version of our work, and was recently solved by Alon and Hod [2], who provided a non-constructive
proof showing that M = O(K log(N/K)).

Acknowledgments

The authors would like to thank Ronen Gradwohl, David Wagner, and the anonymous referees for many
useful comments.

References

[1] NOGA ALON AND MICHAEL R. CAPALBO: Explicit unique-neighbor expanders. In Proc. 43rd
FOCS, pp. 73–79. IEEE Comp. Soc. Press, 2002. [doi:10.1109/SFCS.2002.1181884]. 51

[2] NOGA ALON AND RANI HOD: Optimal monotone encodings. In Proc. the 35th Internat. Col-
loquium on Automata, Languages and Programming (ICALP’08), pp. 258–270. Springer, 2008.
[doi:10.1007/978-3-540-70575-8 22]. 64

[3] Readers ‘declassify’ US document. BBC News, May 2005. http://news.bbc.co.uk/1/hi/
world/europe/4506517.stm. 45

[4] JOHN BETHENCOURT, DAN BONEH, AND BRENT WATERS: Cryptographic methods for stor-
ing ballots on a voting machine. In Proc. 14th Network and Distributed System Security Symp.
(NDSS’07), pp. 209–222, 2007. 49

[5] GUY E. BLELLOCH AND DANIEL GOLOVIN: Strongly history-independent hashing with
applications. In Proc. 48th FOCS, pp. 272–282. IEEE Comp. Soc. Press, 2007.
[doi:10.1109/FOCS.2007.36]. 48

[6] NIV BUCHBINDER AND EREZ PETRANK: Lower and upper bounds on obtaining history-
independence. Inform. and Comput., 204(2):291–337, 2006. [doi:10.1016/j.ic.2005.11.001]. 49

[7] HARRY BUHRMAN, PETER BRO MILTERSEN, JAIKUMAR RADHAKRISHNAN, AND SRINI-
VASAN VENKATESH: Are bitvectors optimal? SIAM J. Comput., 31(6):1723–1744, 2002.
[doi:10.1137/S0097539702405292]. 61

[8] J. CAPETANAKIS: Generalized TDMA: The multi-accessing tree protocol. IEEE Trans. Commun.,
27(10):1479–1484, 1979. 61

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 64

http://dx.doi.org/10.1109/SFCS.2002.1181884
http://dx.doi.org/10.1007/978-3-540-70575-8_22
http://news.bbc.co.uk/1/hi/world/europe/4506517.stm
http://news.bbc.co.uk/1/hi/world/europe/4506517.stm
http://dx.doi.org/10.1109/FOCS.2007.36
http://dx.doi.org/10.1016/j.ic.2005.11.001
http://dx.doi.org/10.1137/S0097539702405292
http://dx.doi.org/10.4086/toc

STORING INFORMATION ON WRITE-ONCE MEMORIES

[9] J. CAPETANAKIS: Tree algorithms for packet broadcast channels. IEEE Trans. Inform. Theory,
25(5):505–515, 1979. 61

[10] AT&T leaks sensitive info in NSA suit. CNET News, May 2006. http://news.cnet.com/
AT38T-leaks-sensitive-info-in-NSA-suit/2100-1028 3-6077353.html. 45

[11] PAUL ERDŐS, PÉTER FRANKL, AND ZOLTÁN FÜREDI: Families of finite sets in which no set is
covered by the union of r others. Israel J. Math., 51:79–89, 1985. [doi:10.1007/BF02772959]. 46,
57, 62

[12] ZOLTÁN FÜREDI: On r-cover-free families. J. Combin. Theory Ser. A, 73(1):172–173, 1996.
[doi:10.1006/jcta.1996.0012]. 46, 57

[13] ALBERT G. GREENBERG AND SHMUEL WINOGRAD: A lower bound on the time needed in the
worst case to resolve conflicts deterministically in multiple access channels. J. ACM, 32(3):589–
596, 1985. [doi:10.1145/3828.214125]. 61

[14] VENKATESAN GURUSWAMI, CHRISTOPHER UMANS, AND SALIL VADHAN: Unbalanced ex-
panders and randomness extractors from Parvaresh-Vardy codes. In Proc. 22nd Annual IEEE
Conference on Computational Complexity (CCC’07), pp. 96–108. IEEE Comp. Soc. Press, 2007.
[doi:10.1109/CCC.2007.38]. 61

[15] JASON D. HARTLINE, EDWIN S. HONG, ALEXANDER E. MOHR, WILLIAM R.PENTNEY, AND

EMILY ROCKE: Characterizing history independent data structures. Algorithmica, 42(1):57–74,
2005. [doi:10.1007/s00453-004-1140-z]. 49

[16] SANDY IRANI, MONI NAOR, AND RONITT RUBINFELD: On the time and space complexity of
computation using write-once memory — or — is pen really much worse than pencil? Mathemat-
ical Systems Theory, 25(2):141–159, 1992. [doi:10.1007/BF02835833]. 48

[17] W. H. KAUTZ AND R. C. SINGLETON: Nonrandom binary superimposed codes. IEEE Trans.
Inform. Theory, 10(4):363–377, 1964. 46, 56, 62

[18] JÁNOS KOMLÓS AND ALBERT G. GREENBERG: An asymptotically fast nonadaptive algorithm
for conflict resolution in multiple-access channels. IEEE Trans. Inform. Theory, 31(2):302–306,
1985. 47, 61

[19] DANIELE MICCIANCIO: Oblivious data structures: Applications to cryptography. In Proc. 29th
STOC, pp. 456–464. ACM Press, 1997. [doi:10.1145/258533.258638]. 47

[20] DAVID MOLNAR, TADAYOSHI KOHNO, NAVEEN SASTRY, AND DAVID WAGNER: Tamper-
evident, history-independent, subliminal-free data structures on PROM storage — or — how to
store ballots on a voting machine. In Proc. IEEE Symp. on Security and Privacy (SP’06), pp.
365–370. IEEE Comp. Soc. Press, 2006. [doi:10.1109/SP.2006.39]. 44, 45, 46, 48, 50, 52, 56

[21] MONI NAOR, GIL SEGEV, AND UDI WIEDER: History-independent cuckoo hashing. In Proc.
35th Internat. Colloquium on Automata, Languages and Programming (ICALP’08), pp. 631–642.
Springer, 2008. 48

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 65

http://news.cnet.com/AT38T-leaks-sensitive-info-in-NSA-suit/2100-1028_3-6077353.html
http://news.cnet.com/AT38T-leaks-sensitive-info-in-NSA-suit/2100-1028_3-6077353.html
http://dx.doi.org/10.1007/BF02772959
http://dx.doi.org/10.1006/jcta.1996.0012
http://dx.doi.org/10.1145/3828.214125
http://dx.doi.org/10.1109/CCC.2007.38
http://dx.doi.org/10.1007/s00453-004-1140-z
http://dx.doi.org/10.1007/BF02835833
http://dx.doi.org/10.1145/258533.258638
http://dx.doi.org/10.1109/SP.2006.39
http://dx.doi.org/10.4086/toc

TAL MORAN, MONI NAOR, AND GIL SEGEV

[22] MONI NAOR AND VANESSA TEAGUE: Anti-persistence: History independent data structures. In
Proc. 33rd STOC, pp. 492–501. ACM Press, 2001. [doi:10.1145/380752.380844]. 48, 49, 50, 63

[23] NOAM NISAN AND AMNON TA-SHMA: Extracting randomness: A survey and new constructions.
J. Comput. System Sci., 58(1):148–173, 1999. [doi:10.1006/jcss.1997.1546]. 60

[24] RONALD L. RIVEST AND ADI SHAMIR: How to reuse a “write-once” memory. Information and
Control, 55(1-3):1–19, 1982. 48

[25] MIKLÓS RUSZINKÓ: On the upper bound of the size of the r-cover-free families. J. Combin.
Theory Ser. A, 66(2):302–310, 1994. [doi:10.1016/0097-3165(94)90067-1]. 46, 57

[26] MICHAEL SIPSER: Expanders, randomness, or time versus space. J. Comput. System Sci.,
36(3):379–383, 1988. [doi:10.1016/0022-0000(88)90035-9]. 58, 60

[27] AMNON TA-SHMA: Storing information with extractors. Information Processing Letters,
83(5):267–274, 2002. [doi:10.1016/S0020-0190(02)00206-5]. 61

[28] AMNON TA-SHMA, CHRISTOPHER UMANS, AND DAVID ZUCKERMAN: Lossless con-
densers, unbalanced expanders, and extractors. Combinatorica, 27(2):213–240, 2007.
[doi:10.1007/s00493-007-0053-2]. 61

AUTHORS

Tal Moran
postdoctoral fellow5

Center for Research on Computation and Society
Harvard University, Cambridge, MA 02138, USA
talm seas harvard edu
http://www.seas.harvard.edu/∼talm/

Moni Naor
professor
Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot 76100, Israel
moni.naor weizmann ac il
http://www.wisdom.weizmann.ac.il/∼naor/

5At the time of submission, the author was a graduate student at the Weizmann Institute of Science, Rehovot, Israel.

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 66

http://dx.doi.org/10.1145/380752.380844
http://dx.doi.org/10.1006/jcss.1997.1546
http://dx.doi.org/10.1016/0097-3165(94)90067-1
http://dx.doi.org/10.1016/0022-0000(88)90035-9
http://dx.doi.org/10.1016/S0020-0190(02)00206-5
http://dx.doi.org/10.1007/s00493-007-0053-2
http://www.seas.harvard.edu/~talm/
http://www.wisdom.weizmann.ac.il/~naor/
http://dx.doi.org/10.4086/toc

STORING INFORMATION ON WRITE-ONCE MEMORIES

Gil Segev
graduate student
Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot 76100, Israel
gil.segev weizmann ac il
http://www.wisdom.weizmann.ac.il/∼gils/

ABOUT THE AUTHORS

TAL MORAN graduated from the Weizmann Institute of Science in 2008 under the super-
vision of Moni Naor. His thesis was titled Cryptography by the People, for the People,
reflecting his interest in applying ideas and techniques from theoretical cryptography to
“real world” systems, such as voting schemes. He is currently a postdoctoral fellow at
the Center for Research on Computation and Society at Harvard University. In his free
time, he has occasionally been seen to juggle.

MONI NAOR received a B. A. degree from the Technion – Israel Institute of Technology,
Haifa, in 1985 and a Ph. D. from the University of California at Berkeley in 1989, both in
computer science. After spending four years at the IBM Almaden Research Center, he
joined the Department of Computer Science and Applied Mathematics at the Weizmann
Institute of Science, Rehovot, Israel, where he currently serves as the incumbent of the
Judith Kleeman Professorial Chair.

GIL SEGEV received a B. S. degree in mathematics and computer science from Tel-Aviv
University, Tel-Aviv, Israel, in 2004 and a M. S. degree in computer science from the
Weizmann Institute of Science, Rehovot, Israel in 2006. He is currently a Ph. D. student
at the Weizmann Institute.

THEORY OF COMPUTING, Volume 5 (2009), pp. 43–67 67

http://www.wisdom.weizmann.ac.il/~gils/
http://www.weizmann.ac.il/
http://www.wisdom.weizmann.ac.il/~naor/
http://crcs.seas.harvard.edu/
http://www.harvard.edu/
http://www.technion.ac.il/
http://www.berkeley.edu/
http://www.almaden.ibm.com/
http://www.wisdom.weizmann.ac.il/
http://www.weizmann.ac.il/
http://www.weizmann.ac.il/
http://www.tau.ac.il
http://www.tau.ac.il
http://www.weizmann.ac.il/
http://dx.doi.org/10.4086/toc

	Introduction
	Our contributions

	Related work
	Definitions and threat model
	Formal definitions
	Security goals and threat model

	The construction
	Overview
	Details

	Analysis of the construction
	Soundness and performance
	Security evaluation and characterization
	Security against post-elections adversaries
	Security against lunch-time adversaries

	Constructions of bounded-neighbor expanders
	A non-constructive proof
	An explicit construction

	A deterministic non-adaptive conflict resolution algorithm
	Overview of the algorithm
	The algorithm

	Concluding remarks
	References

